

A shallow dive into Hexaly Black-box Optimization Solver

Emeline Tenaud

etenaud@hexaly.com

JFRO 2024

www.hexaly.com

Hexaly A quick introduction

Hexaly

The company

Software company specializing in Mathematical Optimization, Operations Research, and Decision Science

- > Powerful optimization solver & platform used by Amazon, FedEx, Starbucks, ...
- > Turnkey custom optimization and planning applications for Air Liquide, Toyota, ...

Hexaly Optimizer

A generic optimization solver

Hexaly Optimizer

Architecture

Black-box Optimization Optimize costly functions

Hexaly Optimizer comprises a **black-box solver**, specialized for **expensive function evaluations**

- A black-box function: the analytical formula is not available
 - Simulator evaluates points and returns values
- An evaluation can last from **a few seconds to several hours**
- Limited evaluation budget

> Each point to be evaluated must be chosen carefully

Ideal properties of a black-box function:

- As little noise as possible: same point, same evaluation
- Kind of continuity

Hexaly Black-box Solver Surrogate modeling

Hexaly Black-box Optimizer

In a nutshell

Hexaly Optimizer tries to learn the profile of the actual black-box function thanks to previously evaluated points

It optimizes the surrogate model to identify and evaluate new promising points

Hexaly Black-box Optimizer

In a nutshell

From time to time, it explores new areas to find promising regions and escape local optima

Surrogate Modeling

Radial Basis Function (RBF)

Surrogate modeling = Approximate the heavy function f by a surrogate s $\min f(x) \Rightarrow \min s(x)$

Surrogate Modeling

Radial Basis Function (RBF)

Surrogate modeling = Approximate the heavy function *f* by a surrogate *s*

 $\min f(x) \Rightarrow \min s(x)$

$$s_k(x) = \sum_{i=0}^k \lambda_i \phi(||x - x_i||) + p(x)$$

Build the surrogate: find λ_i and pcoefficients thanks to the previously evaluated points x_i

Hexaly Black-box Optimizer

Complete resolution method

Initialisation

Selection & evaluation of n + 1 points (random, LHS)

Iteration

- 1. Choice of the best surrogate (leave-one-out cross-validation)
- 2. Generation of a candidate point & evaluation

Generation of a candidate point

Alternate between :

- Exploitation
 - **Optimizing** the surrogate min $s_k(x) \rightarrow via$ solving a Hexaly sub-model
 - Neighborhood for integer problems
- Exploration
 - Get a point as **far away** as possible from previously evaluated points (Hostile Brothers) $\min_{x} HB_{k}(x) = \max_{i \in [\![1,k]\!]} \frac{1 + \log(1 + |f(x_{i}) - f(x^{*})|)}{\sqrt{\sum_{j \in J} (x_{j} - c_{ij})^{2}}}$
 - -> via solving a Hexaly sub-model
 - Randomly

Hexaly Black-box Optimizer

Complete resolution method

Initialisation

Selection & evaluation of n + 1 points (random, LHS)

Iteration

- 1. Choice of the best surrogate (leave-one-out cross-validation)
- 2. Generation of a candidate point & evaluation

 \Rightarrow **Stop** when the evaluation limit is reached

Example: Hosaki Function

Real function

45 iterations (ThinPlate)

20 iterations (Cubic)

70 iterations (Multiquadric)

Constraints integration Analytical and black-box

Constraints

Analytical

• Analytical formula available :

 $\forall c \in C_a, c(x) \leq 0$

- > Using Hexaly operators
- All the analytical constraints must be met to evaluate a point

Constraints

Black-box

- Each constraint is **approximated by a surrogate**³: $\forall c \in C_{bb}, c(x) \le 0 \Rightarrow s(x) \le 0$
 - > Surrogate fitted and chosen at each iteration
- Add an adaptive margin criterion:

hexaly

 $\forall c \in C_{bb}, c(x) \le 0 \Rightarrow s(x) + \varepsilon \le 0$

- > Move away from the bounds to increase the chances of finding a feasible point
- > Adapted at each iteration, depending on the status of the point previously evaluated :
 - Reduce margin if $C_{\text{feas}} \ge T_{\text{feas}}$: $\varepsilon = \frac{1}{2}\varepsilon$
 - Increase margin if $C_{infeas} \ge T_{infeas}$: $\varepsilon = min(2\varepsilon, \varepsilon_{max})$

Multi-objective optimization Hierarchical

Multi-objective optimization

Lexicographic

The objectives are handled **hierarchically**, in a **lexicographic order**

model.minimize(obj1)

model.minimize(obj2)

Better on the first objective \Rightarrow Better overall

- When considering two solutions A and B, A is considered better than B overall if:
 - A is better than B on objectives 1 and 2
 - A is better than B on objective 1, although B is better than A on objective 2
 - A and B are equivalent on objective 1, and A is better than B on objective 2

Multi-objective optimization

Black-box Optimization

Handled in the **same way** in the black-box solver:

- Lexicographic order: objectives should be prioritized
- Each black-box objective is **approximated by a surrogate**

Pareto-efficient solutions: don't prioritize one objective over the others, but rather have a tradeoff between all objectives

- No built-in options in Hexaly Optimizer for Pareto optimization
- Still possible to build Pareto fronts, but you should do it manually

Black-box modeling Using Hexaly Optimizer

Where can black-box functions be used in a Hexaly Optimizer model?

A call to a black-box function can be used in a Hexaly Optimizer model as

- One or several **objective functions**
- One or several constraints
- It is possible to mix analytical and black-box constraints and objectives in the same model

API available in C++, C#, Java, Python, HXM:

Function that returns one or multiple values of the same type (integer or double)
 func <- doubleExternalFunction(...) / intArrayExternalFunction(...);
 surrogateParams = func.context.enableSurrogateModeling();
 callValues <- call(func, ...);

Hexaly Black-box

Modeling

Control the resolution time thanks to the black-box function evaluation limit:

- Number of evaluations is a good stopping criterion for black-box
- Objective threshold can be useful to save computation time

```
function param() {
    surrogateParams.evaluationLimit = 20;
}
```

Hexaly Black-box

Modeling

Inject known initial points:

 Each initial point sent provides valuable information and saves computation time function param() {
 evaluationPoint = surrogateParams.createEvaluationPoint();
 fon [i in 0 = phAnguments]

```
for [i in 0...nbArguments]
```

```
evaluationPoint.addArgument(pointArguments[i]);
```

```
evaluationPoint.returnValue = pointValue;
```

Set an initial solution (not mandatory)

Implementation Challenges

Implementation Challenges

Generic solver

• Surrogate modeling: easy to use with our solver

Parameters configuration

- Tuned with internal benchmarks (customers and academic instances)
- Advanced parameters

Challenges

- Parallelization
- Scalability
- Memory
- Reproducibility
- Integration (simulation platforms)

Black-box Some use cases

Shape Optimization

A simple use case

- Rectangular beam in two dimensions, clamped on the left and with a rectangular hole
- Goal is to determine the hole position to minimize compliance of the structure & maximizing its stiffness (obtained by a simulator)
- Payoff between an increase and a decrease in the size of the hole:
 - Increasing the size of the hole reduces the mass of the beam
 - Decreasing its size increases the beam's stiffness

Rectangular beam in two dimensions, with a rectangular hole (picture generated by FreeFem++⁴)

Shape Optimization

A simple use case

Decisions

• The hole's dimensions and the position of its bottom left corner

Constraints (analytical)

- The size of the hole is constrained to be between a minimal and a maximal value
- The hole must not be too close to the beam's boundary

Objective (simulation)

- Minimizing the compliance of the structure
 - Obtained by a simulation (scalar product of the displacement field of the system and the volumic force applied to it)

Shape Optimization

A simple use case

After 50 iterations, a very good quality solution is found by Hexaly

https://www.hexaly.com/tutorial/shape-optimization-through-simulation-optimization-with-localsolver

Automated Design Optimization Application

Ongoing project

- Computer Architecture Simulation
- Different simulators can interact with one another
- Generate a user-friendly web application, to easily model and optimize design optimization problems
- Goal: provide a low-code application, easy to use for non-optimization experts

havaly 🔺

hexaly 🕈	e Constraints ^
Design Optimization	
Name: Cantilevered Beam	Name * Bending Stress
Name. Cantilevered Beam	Function arguments * × h1 × H × b1 × t
Design parameters A	Maximum value * 5000
	x
Name • h1	
Values Oconfiguration elements	Name • Deflection
Possible values * { 0.1, 0.26, 0.35, 0.5, 0.65, 0.75, 0.9, 1.0 }	Function arguments * x h1 x H x b1 x t
	Maixmum value * 0.1
	x
Name * H	
Values Configuration elements	Objectives ^
Possible values * [3.0, 7.0]	
	Name • Beam Volume
	X Direction Minimization
Name * b1	Direction
Values Oconfiguration elements	Function arguments * x h1 x H x b1 x t
Possible values • [2.0, 12.0]	
	X Optimization parameters
Name * b2	
Values O Configuration elements	Solver • Hexaly × •
Possible values • [3.0, 7.0]	Evaluation limit 50
•	

lame * Bending Stress unction arguments * x h1 x H x b1 x b2 × × laximum value * 5000 lame * Deflection unction arguments * x h1 x H x b1 x b2 × × laixmum value * 0.1 Ð ectives 🔨 lame • Beam Volume

•

× ×

hexaly Cantilevered I-Beam Problem: <u>https://www.hexaly.com/docs/last/exampletour/cantileveredbeam.html</u> Launch optimization

Optimal fertilization of agricultural parcels

Veolia x Hexaly

- Simulation optimization tool to help farmers transition toward smart and sustainable agriculture via organic fertilization
 - More sustainable alternative to synthetic fertilizers: organic soil amendment and fertilization via compost
 - 25-year time horizon
- Decisions:
 - Quantity of synthetic and organic fertilizer spread onto the crops each month
- Objectives and constraints:
 - Evaluated by calling a complex soil simulation software that generates predictions about the soil's evolution over the years
 - From 1 to 10 seconds per simulation call

> Optimal fertilization plans in minutes

Optimal fertilization of agricultural parcels

Veolia x Hexaly

Solutions that both meet their goals in the short term and are sustainable in the long term

Carbon in the soil

Advantages of using organic fertilizers by simulating the evolution of the carbon amount in the soil over eight years

Fertilization strategy resulting in 8% more carbon in the soil than the farmer plan, and 10% more than synthetic fertilization only, making the soil more fertile in the long term

A shallow dive into Hexaly Black-box Optimization Solver

Emeline Tenaud

etenaud@hexaly.com

JFRO 2024

www.hexaly.com

References

- 1. A. Costa, G. Nannicini. *RBFOpt : an open-source library for black-box optimization with costly function evaluations*. Optimization Online 2014-09-4538, 2014.
- 2. H.M. Gutmann. *A radial basis function method for global optimization*. Journal of Global Optimization 19, 201-227, 2001.
- 3. R.G. Regis. *Constrained optimization by radial basis function interpolation for highdimensional expensive black-box problems with infeasible initial points*. Engineering Optimization, 46(2):218–243, 2014.
- 4. F. Hecht. *New development in FreeFem++*. Journal of numerical mathematics, 2012, vol. 20, no 3-4, p. 251-266.