Random subspaces approaches in derivative-free optimization

Clément W. Royer (Université Paris Dauphine-PSL)

Journées Franciliennes de Recherche Opérationnelle

November 26, 2024

- New wing in construction⇒ 2025.
- Others renovated in order: B, P, C+D, A.
- Expected year of completion: 2028.

Our task: Allocate office space during the renovation process.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim 30$ hyperparameters defining the model (for now).
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim 30$ hyperparameters defining the model (for now).
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

Cannot differentiate (easily) within Gurobi \Rightarrow Derivative-free/Blackbox algorithms!

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim$ 30 hyperparameters defining the model (for now).
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

- Cannot differentiate (easily) within Gurobi \Rightarrow Derivative-free/Blackbox algorithms!
- Solving time depends on hyperparameters (3-48 hours to find a feasible point!)
	- \Rightarrow Expensive evaluations.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim 30$ hyperparameters defining the model (for now).
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

- Cannot differentiate (easily) within Gurobi \Rightarrow Derivative-free/Blackbox algorithms!
- Solving time depends on hyperparameters (3-48 hours to find a feasible point!)
	- \Rightarrow Expensive evaluations.
- Feedback on the model⇒ More hyperparameters!
	- \Rightarrow Need algorithms that scale.

This talk

Subspace methods

- Help reduce the cost of blackbox optimization.
- Theory: Dimensionality reduction/Sketching.
- Practice: Easy to implement.

Research questions

- How do you use subspaces in an algorithm?
- Can this work? If so, why?

Today

- Focus on direct search.
- Results apply to other settings (model-based).

1 [Direct-search algorithm](#page-8-0)

- 2 [Reduced subspace approach](#page-27-0)
- 3 [Subspace dimensions](#page-49-0)

1 [Direct-search algorithm](#page-8-0)

- 2 [Reduced subspace approach](#page-27-0)
-

minimize $x \in \mathbb{R}^n$ f(x).

Assumptions

- \bullet f bounded below:
- \bullet f continuously differentiable (for analysis).

Blackbox optimization

- Derivatives unavailable for algorithmic use.
- \circ Only access to values of f.

```
Similar to: Local search, (1+1)-ES, ...
```

```
Inputs: x_0 \in \mathbb{R}^n, \delta_0 > 0.
Iteration k: Given (x_k, \delta_k),
       Choose a set \mathcal{D}_k \subset \mathbb{R}^n of m vectors.
```
Similar to: Local search, $(1+1)$ -ES, ...

Inputs: $x_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (x_k, δ_k) , Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of m vectors. \bullet If \exists d_k \in \mathcal{D}_k such that $f(\mathbf{x}_k + \delta_k \mathbf{d}_k) < f(\mathbf{x}_k) - \delta_k^2 ||\mathbf{d}_k||^2$ set $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$, $\delta_{k+1} := 2\delta_k$.

Similar to: Local search, $(1+1)$ -ES, ...

Inputs: $x_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (x_k, δ_k) , Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of m vectors. \bullet If \exists d_k \in \mathcal{D}_k such that $f(\mathbf{x}_k + \delta_k \mathbf{d}_k) < f(\mathbf{x}_k) - \delta_k^2 ||\mathbf{d}_k||^2$ set $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$, $\delta_{k+1} := 2\delta_k$. **Otherwise, set** $\mathbf{x}_{k+1} := \mathbf{x}_k$ **,** $\delta_{k+1} := \delta_k/2$.

Similar to: Local search, $(1+1)$ -ES, ...

Inputs: $x_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (x_k, δ_k) , Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of m vectors. \bullet If \exists d_k \in \mathcal{D}_k such that $f(\mathbf{x}_k + \delta_k \mathbf{d}_k) < f(\mathbf{x}_k) - \delta_k^2 ||\mathbf{d}_k||^2$ set $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$, $\delta_{k+1} := 2\delta_k$. **Otherwise, set** $\mathbf{x}_{k+1} := \mathbf{x}_k$ **,** $\delta_{k+1} := \delta_k/2$.

Similar to: Local search, $(1+1)$ -ES, ...

InputStream
$$
k: \mathbf{S} \in \mathbb{R}^n
$$
, $\delta_0 > 0$.

\nIteration $k: \text{Given } (\mathbf{x}_k, \delta_k)$,

\n• Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of m vectors.

\n• If $\exists \mathbf{d}_k \in \mathcal{D}_k$ such that

\n
$$
f(\mathbf{x}_k + \delta_k \mathbf{d}_k) < f(\mathbf{x}_k) - \delta_k^2 \|\mathbf{d}_k\|^2
$$

set $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$, $\delta_{k+1} := 2\delta_k$.

Otherwise, set $\mathbf{x}_{k+1} := \mathbf{x}_k, \delta_{k+1} := \delta_k/2$.

Which vectors should we use?

A measure of set quality

The set \mathcal{D}_k is called κ -descent for f at \mathbf{x}_k if

$$
\max_{\boldsymbol{d}\in\mathcal{D}_k}\frac{-\boldsymbol{d}^{\mathrm{T}}\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\nabla f(\boldsymbol{x}_k)\|} \ \geq \ \kappa\in(0,1].
$$

A measure of set quality

The set \mathcal{D}_k is called κ -descent for f at \mathbf{x}_k if

$$
\max_{\boldsymbol{d}\in\mathcal{D}_k}\frac{-\boldsymbol{d}^{\mathrm{T}}\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\nabla f(\boldsymbol{x}_k)\|} \ \geq \ \kappa\in(0,1].
$$

• Guaranteed when D_k is a Positive Spanning Set (PSS);

$$
\circ \mathcal{D}_k \text{ PSS} \Rightarrow |\mathcal{D}_k| \geq n+1;
$$

Ex) $\mathcal{D}_{\oplus} := \left[\boldsymbol{I}_n \; - \boldsymbol{I}_n \right]$ is always $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ -descent.

Complexity of deterministic direct search

Assumption: For every k, \mathcal{D}_k is κ -descent and contains m unit directions.

Theorem (Vicente '12)

Let $\epsilon \in (0,1)$ and N_{ϵ} be the number of function evaluations needed to reach x_k such that $\|\nabla f(x_k)\| \leq \epsilon$. Then,

$$
N_{\epsilon} \leq \mathcal{O}\left(m\,\kappa^{-2}\,\epsilon^{-2}\right).
$$

Complexity of deterministic direct search

Assumption: For every k, D_k is κ -descent and contains m unit directions.

Theorem (Vicente '12)

Let $\epsilon \in (0,1)$ and N_{ϵ} be the number of function evaluations needed to reach x_k such that $\|\nabla f(x_k)\| \leq \epsilon$. Then,

 $N_{\epsilon} \leq \mathcal{O}\left(m\kappa^{-2}\epsilon^{-2}\right).$

- Unit norm can be replaced by bounded norm.
- Choosing $\mathcal{D}_k = \mathcal{D}_\oplus$, one has $\kappa = \frac{1}{\sqrt{k}}$ $\frac{1}{n}$, $m = 2n$, and the bound becomes

$$
N_{\epsilon} \leq \mathcal{O}\left(n^2 \epsilon^{-2}\right).
$$

⇒Best possible dependency w.r.t. n for deterministic direct-search algorithms.

Randomizing direct search

Classical direct search

Set $\mathcal{D}_k \subset \mathbb{R}^n$, $|\mathcal{D}_k| = m$, cm $(\mathcal{D}_k) \geq \kappa$;

• Complexity:

$$
\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).
$$

• *m* depends on *n* ($m \ge n + 1$). κ depends on n (approximate $\nabla f(\mathbf{x}_k) \in \mathbb{R}^n$).

Randomizing direct search

Classical direct search

• Set
$$
\mathcal{D}_k \subset \mathbb{R}^n
$$
, $|\mathcal{D}_k| = m$, cm $(\mathcal{D}_k) \ge \kappa$;

• Complexity:

$$
\mathcal{O}(m\kappa^{-2}\,\epsilon^{-2}).
$$

• *m* depends on *n* (*m* \geq *n* + 1). κ depends on n (approximate $\nabla f(\mathbf{x}_k) \in \mathbb{R}^n$).

My original thought

- Generate directions in random subspaces of \mathbb{R}^n ;
- Use results from dimensionality reduction;
- Remove all dependencies on n!

Randomizing direct search

Classical direct search

Set $\mathcal{D}_k \subset \mathbb{R}^n$, $|\mathcal{D}_k| = m$, cm $(\mathcal{D}_k) \geq \kappa$;

• Complexity:

$$
\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).
$$

• *m* depends on *n* (*m* \geq *n* + 1). κ depends on n (approximate $\nabla f(\mathbf{x}_k) \in \mathbb{R}^n$).

My original thought

- Generate directions in random subspaces of \mathbb{R}^n ;
- Use results from dimensionality reduction;
- \bullet Remove all dependencies on $n!$

Spoiler alert: You can only reduce the dependency on n.

What can you do?

Our approach

- Consider a random subspace of dimension $r \leq n$;
- Use a PSS to approximate the projected gradient in the subspace;
- Guarantee sufficient gradient information in probability.

What it brings us

- **Q** Use random directions.
- Possibly less than *n*.
- Possibly unbounded.

Not the only game in town $(1/2)$

Probabilistic descent (Gratton et al '15)

- Use directions $[\boldsymbol{d} \boldsymbol{d}]$ with $\boldsymbol{d} \sim \mathcal{U}(\mathbb{S}^{n-1})$.
- Complexity improves from $\mathcal{O}(n^2 \epsilon^{-2})$ to $\mathcal{O}(n \epsilon^{-2})$ $(m=2)$.

Q. Limited to one distribution.

Not the only game in town $(1/2)$

Probabilistic descent (Gratton et al '15)

- Use directions $[\boldsymbol{d} \boldsymbol{d}]$ with $\boldsymbol{d} \sim \mathcal{U}(\mathbb{S}^{n-1})$.
- Complexity improves from $\mathcal{O}(n^2 \epsilon^{-2})$ to $\mathcal{O}(n \epsilon^{-2})$ $(m=2)$.
- **Q.** Limited to one distribution.

Gaussian smoothing approach: Draw $\boldsymbol{d} \sim \mathcal{N}(0, \boldsymbol{l})$ and use

$$
\frac{f(x+\delta d)-f(x)}{\delta}d \text{ or } \frac{f(x+\delta d)-f(x-\delta d)}{\delta}d.
$$

Random gradient-free method (Nesterov and Spokoiny 2017), Stochastic three-point method (Bergou et al, 2020).

- Also achieve $\mathcal{O}(n\epsilon^{-2})$ bound.
- Use one-dimensional subspace based on Gaussian vectors.
- Use fixed or decreasing stepsizes.

Zeroth-order (Kozak et al '21, '22)

- Estimate directional derivatives directly.
- Use orthogonal random directions $\boldsymbol{Q} \in \mathbb{R}^{n \times r}$, $\boldsymbol{Q}^\mathrm{T} \boldsymbol{Q} = \boldsymbol{I}$.
- Complexity results for convex/PL functions.

Zeroth-order (Kozak et al '21, '22)

- Estimate directional derivatives directly.
- Use orthogonal random directions $\boldsymbol{Q} \in \mathbb{R}^{n \times r}$, $\boldsymbol{Q}^\mathrm{T} \boldsymbol{Q} = \boldsymbol{I}$.
- Complexity results for convex/PL functions.

Our approach

- General, subspace-based framework.
- Inspiration: Model-based methods (Cartis and Roberts '23, Dzahini and Wild '22a).

1 [Direct-search algorithm](#page-8-0)

Algorithm

Inputs: $x_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (x_k, δ_k) , Choose $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$ at random. Choose $\mathcal{D}_k \subset \mathbb{R}^r$ having m vectors. \bullet If \exists d_k ∈ \mathcal{D}_k such that $f(\mathbf{x}_k + \delta_k \, \boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k) < f(\mathbf{x}_k) - \delta_k^2 ||\boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k||^2,$ set $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k, \ \delta_{k+1} := 2 \delta_k.$ Otherwise, set $\mathbf{x}_{k+1} := \mathbf{x}_k, \delta_{k+1} := \delta_k/2$.

New polling sets

$$
\left\{ \boldsymbol{P}_{k}^{\mathrm{T}}\boldsymbol{d} \mid \boldsymbol{d} \in \mathcal{D}_{k} \right\} \subset \mathbb{R}^{n}.
$$

- $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$: Maps onto *r*-dimensional subspace;
- \mathcal{D}_k : Direction set in \mathbb{R}^r .

What do we want?

- Preserve information while applying $\bm{P}_k / \bm{P}_k^\mathrm{T}.$
- Approximate $-P_k\nabla f(\mathbf{x}_k)$ using \mathcal{D}_k .

 P_k is $(\eta, \sigma, P_{\text{max}})$ -well aligned for (f, x_k) if

$$
\left\{\n\begin{array}{rcl}\n\|\mathbf{P}_k \nabla f(\mathbf{x}_k)\| & \geq & \eta \|\nabla f(\mathbf{x}_k)\|, \\
\sigma_{\min}(\mathbf{P}_k) & \geq & \sigma, \\
\sigma_{\max}(\mathbf{P}_k) & \leq & P_{\max}.\n\end{array}\n\right.
$$

 P_k is $(\eta, \sigma, P_{\text{max}})$ -well aligned for (f, x_k) if

$$
\left\{\begin{array}{rcl}\|\boldsymbol{P}_k \nabla f(\mathbf{x}_k)\| & \geq & \eta \|\nabla f(\mathbf{x}_k)\|, \\
\sigma_{\min}(\boldsymbol{P}_k) & \geq & \sigma, \\
\sigma_{\max}(\boldsymbol{P}_k) & \leq & P_{\max}.\n\end{array}\right.
$$

Ex) $P_k = I_n \in \mathbb{R}^{n \times n}$ is $(1, 1, 1)$ -well aligned.

 P_k is $(\eta, \sigma, P_{\text{max}})$ -well aligned for (f, x_k) if

$$
\left\{\n\begin{array}{rcl}\n\|\boldsymbol{P}_k \nabla f(\mathbf{x}_k)\| & \geq & \eta \|\nabla f(\mathbf{x}_k)\|, \\
\sigma_{\min}(\boldsymbol{P}_k) & \geq & \sigma, \\
\sigma_{\max}(\boldsymbol{P}_k) & \leq & P_{\max}.\n\end{array}\n\right.
$$

$$
Ex) P_k = I_n \in \mathbb{R}^{n \times n}
$$
 is (1, 1, 1)-well aligned.

Probabilistic version

 ${P_k}$ is $(q, \eta, \sigma, P_{\text{max}})$ -well aligned if:

 $\mathbb{P}(\mathbf{P}_0 \ (q, \eta, \sigma, P_{\text{max}})$ -well aligned $) \geq q$ $\forall k \geq 1$, $\mathbb{P}((q, \eta, \sigma, P_{\text{max}})$ -well aligned $|\mathbf{P}_0, \mathcal{D}_0, \dots, \mathbf{P}_{k-1}, \mathcal{D}_{k-1}| \geq q$,

Probabilistic properties for \mathcal{D}_k

Deterministic descent

The set \mathcal{D}_k is (κ, d_{max}) -descent for (f, \mathbf{x}_k) if

$$
\begin{cases}\n\max_{\mathbf{d}\in\mathcal{D}_k} \frac{-\mathbf{d}^{\mathrm{T}} P_k \nabla f(\mathbf{x}_k)}{\|\mathbf{d}\| \|\mathbf{P}_k \nabla f(\mathbf{x}_k)\|} \geq \kappa, \\
\forall \mathbf{d}\in\mathcal{D}_k, \quad d_{\max}^{-1} \leq \|\mathbf{d}\| \leq d_{\max}.\n\end{cases}
$$

Probabilistic properties for \mathcal{D}_k

Deterministic descent

The set \mathcal{D}_k is (κ, d_{max}) -descent for (f, \mathbf{x}_k) if

$$
\begin{cases}\n\max_{\mathbf{d}\in\mathcal{D}_k} \frac{-\mathbf{d}^{\mathrm{T}} P_k \nabla f(\mathbf{x}_k)}{\|\mathbf{d}\| \|\mathcal{P}_k \nabla f(\mathbf{x}_k)\|} \geq \kappa, \\
\forall \mathbf{d}\in\mathcal{D}_k, \quad d_{\max}^{-1} \leq \|\mathbf{d}\| \leq d_{\max}.\n\end{cases}
$$

$$
Ex) D_{\oplus} = \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\} \text{ is } (\frac{1}{\sqrt{n}}, 1)\text{-}descent.
$$

Probabilistic properties for \mathcal{D}_k

Deterministic descent

The set \mathcal{D}_k is (κ, d_{max}) -descent for (f, x_k) if

$$
\begin{cases}\n\max_{\mathbf{d}\in\mathcal{D}_k} \frac{-\mathbf{d}^{\mathrm{T}} P_k \nabla f(\mathbf{x}_k)}{\|\mathbf{d}\| \|\mathbf{P}_k \nabla f(\mathbf{x}_k)\|} \geq \kappa, \\
\forall \mathbf{d}\in\mathcal{D}_k, \quad d_{\max}^{-1} \leq \|\mathbf{d}\| \leq d_{\max}.\n\end{cases}
$$

$$
Ex) D_{\oplus} = \{ \mathbf{e}_1, \ldots, \mathbf{e}_n, -\mathbf{e}_1, \ldots, -\mathbf{e}_n \} \text{ is } (\frac{1}{\sqrt{n}}, 1)\text{-}descent.
$$

Probabilistic descent sets

 $\{\mathcal{D}_k\}$ is $(p, \kappa, d_{\text{max}})$ -descent if:

$$
\mathbb{P}\left(\mathcal{D}_0 \left(\kappa, d_{\sf max} \right) \textrm{-descent} \ \vert \ \textcolor{red}{P}_0 \right) \ \geq \ \textcolor{red}{\rho}
$$

 $\forall k \geq 1, \quad \mathbb{P}(\mathcal{D}_k \ (\kappa, d_{\text{max}})$ -descent $|\ \boldsymbol{P}_0, \mathcal{D}_0, \dots, \boldsymbol{P}_{k-1}, \mathcal{D}_{k-1}, \boldsymbol{P}_k| \geq p,$

Complexity analysis

Theorem (Roberts, R. '23)

Assume:

- \bullet { \mathcal{D}_k } ($p, \kappa, d_{\text{max}}$)-descent, $|\mathcal{D}_k| = m$;
- $\{\boldsymbol{P}_k\}$ $(q,\eta,\sigma,P_{\sf max})$ -well aligned, $pq>\frac{1}{2}$ $rac{1}{2}$.

Let N_{ϵ} the number of function evaluations needed to have $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$.

$$
\mathbb{P}\left(N_\varepsilon \leq \mathcal{O}\left(\frac{m \phi \varepsilon^{-2}}{2pq-1}\right)\right) \geq 1 - \exp\left(-\mathcal{O}\left(\frac{2pq-1}{pq} \phi \varepsilon^{-2}\right)\right).
$$

where $\phi = d_{\sf max}^8 \kappa^{-2} \eta^{-2} \sigma^{-2} P_{\sf max}^4$.

Complexity analysis

Theorem (Roberts, R. '23)

Assume:

- \bullet $\{\mathcal{D}_k\}$ (p, κ , d_{max})-descent, $|\mathcal{D}_k| = m$;
- $\{\boldsymbol{P}_k\}$ $(q,\eta,\sigma,P_{\sf max})$ -well aligned, $pq>\frac{1}{2}$ $rac{1}{2}$.

Let N_{ϵ} the number of function evaluations needed to have $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$.

$$
\mathbb{P}\left(N_{\epsilon} \leq \mathcal{O}\left(\frac{m\phi\epsilon^{-2}}{2pq-1}\right)\right) \geq 1 - \exp\left(-\mathcal{O}\left(\frac{2pq-1}{pq}\phi\epsilon^{-2}\right)\right).
$$

re $\phi = d_{\max}^8 \kappa^{-2} \eta^{-2} \sigma^{-2} P_{\max}^4.$

How does this bound depend on n? How can we choose D_k and P_k ?

whe

Choosing directions (\mathcal{D}_k) and subspaces (\boldsymbol{P}_k)

o Deterministic

- $\mathcal{D}_k = [I_n I_n]$ $(m = 2n)$
- \bullet $\boldsymbol{P}_k = \boldsymbol{I}_n$ (no subspace).

Choosing directions (\mathcal{D}_k) and subspaces (P_k)

o Deterministic

- $\mathcal{D}_k = [I_n I_n]$ $(m = 2n)$ \bullet $\boldsymbol{P}_k = \boldsymbol{I}_n$ (no subspace).
- (Random) Orthogonal

$$
\circ \mathcal{D}_k = \begin{bmatrix} I_r & -I_r \end{bmatrix} \left(m = 2r \right)
$$

$$
\bullet \ \boldsymbol{P}_k \in \mathbb{R}^{r \times n}, \ \boldsymbol{P}_k \boldsymbol{P}_k^{\mathrm{T}} = \boldsymbol{I}_r.
$$

• Known properties on P_k (Kozak et al '21).

Choosing directions (\mathcal{D}_k) and subspaces (P_k)

o Deterministic

- $\mathcal{D}_k = [I_n I_n]$ (m = 2n) \bullet $\boldsymbol{P}_k = \boldsymbol{I}_n$ (no subspace).
- (Random) Orthogonal

$$
\bullet \mathcal{D}_k = [\boldsymbol{I}_r - \boldsymbol{I}_r] \ (m = 2r)
$$

$$
\bullet \ \boldsymbol{P}_k \in \mathbb{R}^{r \times n}, \ \boldsymbol{P}_k \boldsymbol{P}_k^{\mathrm{T}} = \boldsymbol{I}_r.
$$

- Known properties on P_k (Kozak et al '21).
- (Random) Gaussian

$$
\bullet \mathcal{D}_k = \left[\mathbf{I}_r - \mathbf{I}_r\right] \left(m = 2r\right)
$$

- $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$, $[\boldsymbol{P}_k]_{i,j} \sim \mathcal{N}(0, \frac{1}{r}).$
- Known guarantees on singular values of P_k (2010s).

Choosing directions (\mathcal{D}_k) and subspaces (P_k)

o Deterministic

- $\mathcal{D}_k = [I_n I_n]$ (m = 2n) \bullet $\boldsymbol{P}_k = \boldsymbol{I}_n$ (no subspace).
- (Random) Orthogonal

$$
\bullet \mathcal{D}_k = \left[\boldsymbol{I}_r - \boldsymbol{I}_r\right] \left(m = 2r\right)
$$

$$
\bullet \ \boldsymbol{P}_k \in \mathbb{R}^{r \times n}, \ \boldsymbol{P}_k \boldsymbol{P}_k^{\mathrm{T}} = \boldsymbol{I}_r.
$$

- Known properties on P_k (Kozak et al '21).
- (Random) Gaussian

$$
\mathbf{D}_k = \begin{bmatrix} \mathbf{I}_r & -\mathbf{I}_r \end{bmatrix} \begin{pmatrix} m = 2r \end{pmatrix}
$$

- $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$, $[\boldsymbol{P}_k]_{i,j} \sim \mathcal{N}(0, \frac{1}{r}).$
- Known guarantees on singular values of P_k (2010s).
- (Random) Hashing

$$
\bullet \mathcal{D}_k = [\boldsymbol{I}_r - \boldsymbol{I}_r] \ (m = 2r)
$$

- $\boldsymbol{P}_k \in \{\pm \frac{1}{\sqrt{s}}, 0\}^{r \times n}$, s nonzero per columns.
- New theory motivated by our work (Dzahini, Wild '22)

Analysis in a nutshell

Analysis in a nutshell

Conclusions

- Can compute steps in *r*-dim. subspaces, $r = \mathcal{O}(1)$.
- Effectively less evaluations per iteration.
- Complexity: $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)!$

Benchmark:

• Medium-scale test set (90 CUTEst problems of dimension \approx 100);

• Large-scale test set (28 CUTEst problems of dimension \approx 1000). Budget: $200(n + 1)$ evaluations.

Comparison:

- **•** Deterministic DS with $D_k = [I_n I_n]$ or $D_k = [I_n I_n]$;
- Probabilistic direct search with 2 uniform directions:
- Stochastic Three Point:
- Probabilistic direct search with Gaussian/Hashing/Orthogonal P_k matrices $+ r = 1$.
- Goal: Satisfy $f(\mathbf{x}_k) f_{\text{opt}} \leq 0.1(f(\mathbf{x}_0) f_{\text{opt}}).$

Comparison of all methods

Left: Medium scale; Right: Large scale.

- Challenging examples for (basic) direct search.
- Random subspaces bring improvement!

Gaussian matrices and subspace dimensions

Left: Medium scale; Right: Large scale.

Numerically

- \bullet Subspace dimension > 1 may improve performance...
- ...but in general opposite (Gaussian) directions work best!

Towards more numerics...

The package

- https://github.com/lindonroberts/directsearch
- \bullet Python code + paper experiments.
- **•** pip install directsearch

The package

- https://github.com/lindonroberts/directsearch
- Python code $+$ paper experiments.
- **•** pip install directsearch

Recent use at Meta:

Olivier Teytaud

Admin \cdot 23 janvier \cdot \odot

In progress: adding https://github.com/lindonroberts/ directsearch inside Nevergrad. In particular there is an excellent stochastic direct search method. I don't know exactly the algorithm (yet). Thanks guys for this excellent code!

Replaced CMA-ES in optimization wizard on smooth problems!

 $- - -$

1 [Direct-search algorithm](#page-8-0)

2 [Reduced subspace approach](#page-27-0)

If you want to scale up...

- Can compute steps in r-dim. subspaces, $r = \mathcal{O}(1)$;
- Reduced evaluation cost per iteration;
- Overall complexity: $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)!$

Numerically

- Subspaces of dimension $r > 1$ may be good...
- \bullet ...but in general opposite Gaussian directions ($r = 1$) are better!

Warren: "But why does this work?"

Why do 1-dim. subspaces give best performance?

Key result (Hare, Roberts, R. '22)

Let
$$
\mathbf{g} \in \mathbb{S}^{n-1}
$$
, $\mathbf{P} \in \mathbb{R}^{r \times n}$ and $\mathcal{D} = [\mathbf{I}_r - \mathbf{I}_r]$.
Then, the expected decrease ratio

$$
\frac{\mathbb{E}\left[\min_{\boldsymbol{d}\in\mathcal{D}}\boldsymbol{g}^{\mathrm{T}}\boldsymbol{P}^{\mathrm{T}}\boldsymbol{d}\right]}{2r}
$$

is minimized at $r = 1$.

Warren: "But why does this work?"

Why do 1-dim. subspaces give best performance?

Key result (Hare, Roberts, R. '22)

Let
$$
\mathbf{g} \in \mathbb{S}^{n-1}
$$
, $\mathbf{P} \in \mathbb{R}^{r \times n}$ and $\mathcal{D} = [\mathbf{I}_r - \mathbf{I}_r]$.
Then the expected decrease ratio

Then, the expected decrease ratio

$$
\frac{\mathbb{E}\left[\min_{\boldsymbol{d}\in\mathcal{D}}\boldsymbol{g}^{\mathrm{T}}\boldsymbol{P}^{\mathrm{T}}\boldsymbol{d}\right]}{2r}
$$

is minimized at $r = 1$.

To decrease $\pmb{x} \mapsto \pmb{g}^\mathrm{T} \pmb{x}, \ r = 1$ gives the best "bang for your buck".

• Using Taylor approximation

$$
f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) \approx \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{v},
$$

explains why this happens beyond linear functions.

Numerical validation

Setup

- Monte-Carlo approximations of expected decrease.
- Quadratic functions with a random linear term $\textbf{\textit{x}} \mapsto \textbf{\textit{g}}^\text{T} \textbf{\textit{x}} + \frac{L}{2}$ $\frac{L}{2} ||\mathbf{x}||^2$.
- Normalization by the number of function evaluations.

Our results...

- Probabilistic analysis/subspace viewpoint.
- o Improved complexity backed up by numerics.
- Low dimension provably better on average.

Our results...

- Probabilistic analysis/subspace viewpoint.
- o Improved complexity backed up by numerics.
- Low dimension provably better on average.

...and beyond

- Stochastic setting (Hot topic!).
- Constraints (Ongoing work).
- More numerics (Solvers/Applications).

References

- Direct search based on probabilistic descent in reduced spaces L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
- Expected decrease for derivative-free algorithms using random subspaces

W. Hare, L. Roberts and C. W. Royer, Math. Comp., 94:277-304, 2025.

https://github.com/lindonroberts/directsearch

References

- Direct search based on probabilistic descent in reduced spaces L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
- Expected decrease for derivative-free algorithms using random subspaces

W. Hare, L. Roberts and C. W. Royer, Math. Comp., 94:277-304, 2025.

https://github.com/lindonroberts/directsearch

Merci! clement.royer@lamsade.dauphine.fr