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Motivation: Dauphine’s Nouveau Campus

New wing in construction⇒ 2025.
Others renovated in order: B, P, C+D, A.
Expected year of completion: 2028.

Our task: Allocate office space during the renovation process.
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Motivation: Dauphine’s Nouveau Campus (’ed)

Our model for the Dauphine problem
Huge integer LP, solved via Gurobi.
∼ 30 hyperparameters defining the model (for now).
Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

Cannot differentiate (easily) within Gurobi
⇒ Derivative-free/Blackbox algorithms!
Solving time depends on hyperparameters
(3-48 hours to find a feasible point!)
⇒ Expensive evaluations.
Feedback on the model⇒ More hyperparameters!
⇒ Need algorithms that scale.
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This talk

Subspace methods
Help reduce the cost of blackbox optimization.
Theory: Dimensionality reduction/Sketching.
Practice: Easy to implement.

Research questions
How do you use subspaces in an algorithm?
Can this work? If so, why?

Today
Focus on direct search.
Results apply to other settings (model-based).
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Roadmap

1 Direct-search algorithm

2 Reduced subspace approach

3 Subspace dimensions
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Setup

minimizex∈Rn f (x).

Assumptions
f bounded below;
f continuously differentiable (for analysis).

Blackbox optimization
Derivatives unavailable for algorithmic use.
Only access to values of f .
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A (simplified) direct-search framework

Similar to: Local search, (1+1)-ES, ...

Inputs: x0 ∈ Rn, δ0 > 0.
Iteration k: Given (xk , δk),

Choose a set Dk ⊂ Rn of m vectors.

If ∃ d k ∈ Dk such that

f (xk + δk d k) < f (xk)− δ2
k∥d k∥2

set xk+1 := xk + δkd k , δk+1 := 2δk .
Otherwise, set xk+1 := xk , δk+1 := δk/2.

Which vectors should we use?
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Choosing Dk

A measure of set quality
The set Dk is called κ-descent for f at xk if

max
d∈Dk

−dT∇f (xk)

∥d∥∥∇f (xk)∥
≥ κ ∈ (0, 1].

Guaranteed when Dk is a Positive Spanning Set (PSS);
Dk PSS ⇒ |Dk | ≥ n + 1;
Ex) D⊕ := [I n − I n] is always 1√

n
-descent.
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Complexity of deterministic direct search

Assumption: For every k , Dk is κ-descent and contains m unit directions.

Theorem (Vicente ’12)

Let ϵ ∈ (0, 1) and Nϵ be the number of function evaluations needed to
reach xk such that ∥∇f (xk)∥ ≤ ϵ. Then,

Nϵ ≤ O
(
m κ−2 ϵ−2) .

Unit norm can be replaced by bounded norm.
Choosing Dk = D⊕, one has κ = 1√

n
, m = 2n, and the bound

becomes
Nϵ ≤ O

(
n2 ϵ−2) .

⇒Best possible dependency w.r.t. n for deterministic direct-search
algorithms.
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Randomizing direct search

Classical direct search
Set Dk ⊂ Rn, |Dk | = m, cm(Dk) ≥ κ;
Complexity:

O(mκ−2 ϵ−2).

m depends on n (m ≥ n + 1).
κ depends on n (approximate ∇f (xk) ∈ Rn).

My original thought
Generate directions in random subspaces of Rn;
Use results from dimensionality reduction;
Remove all dependencies on n!

Spoiler alert: You can only reduce the dependency on n.
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What can you do?

Our approach
Consider a random subspace of dimension r ≤ n;
Use a PSS to approximate the projected gradient in the subspace;
Guarantee sufficient gradient information in probability.

What it brings us
Use random directions.
Possibly less than n.
Possibly unbounded.
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Not the only game in town (1/2)

Probabilistic descent (Gratton et al ’15)

Use directions [d −d ] with d ∼ U(Sn−1).

Complexity improves from O(n2ϵ−2) to O(nϵ−2) (m = 2).

Limited to one distribution.

Gaussian smoothing approach: Draw d ∼ N (0, I ) and use

f (x + δd )− f (x)
δ

d or
f (x + δd )− f (x − δd )

δ
d .

Random gradient-free method (Nesterov and Spokoiny 2017),
Stochastic three-point method (Bergou et al, 2020).

Also achieve O(nϵ−2) bound.

Use one-dimensional subspace based on Gaussian vectors.

Use fixed or decreasing stepsizes.
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Not the only game in town (2/2)

Zeroth-order (Kozak et al ’21, ’22)
Estimate directional derivatives directly.
Use orthogonal random directions Q ∈ Rn×r , QTQ = I .
Complexity results for convex/PL functions.

Our approach
General, subspace-based framework.
Inspiration: Model-based methods
(Cartis and Roberts ’23, Dzahini and Wild ’22a).
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Outline

1 Direct-search algorithm

2 Reduced subspace approach

3 Subspace dimensions
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Algorithm

Inputs: x0 ∈ Rn , δ0 > 0.
Iteration k: Given (xk , δk),

Choose Pk ∈ Rr×n at random.
Choose Dk ⊂ Rr having m vectors.
If ∃ d k ∈ Dk such that

f (xk + δk PT
k d k) < f (xk)− δ2

k∥PT
k d k∥2,

set xk+1 := xk + δkPT
k d k , δk+1 := 2δk .

Otherwise, set xk+1 := xk , δk+1 := δk/2.
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Probabilistic properties

New polling sets {
PT

k d
∣∣ d ∈ Dk

}
⊂ Rn.

Pk ∈ Rr×n: Maps onto r -dimensional subspace;
Dk : Direction set in Rr .

What do we want?

Preserve information while applying Pk/PT
k .

Approximate −Pk∇f (xk) using Dk .
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Probabilistic properties for Pk

Pk is (η, σ,Pmax)-well aligned for (f , xk) if
∥Pk∇f (xk)∥ ≥ η∥∇f (xk)∥,

σmin(Pk) ≥ σ,
σmax(Pk) ≤ Pmax.

Ex) Pk = I n ∈ Rn×n is (1, 1, 1)-well aligned.

Probabilistic version
{Pk} is (q, η, σ,Pmax)-well aligned if:

P (P0 (q, η, σ,Pmax)-well aligned ) ≥ q

∀k ≥ 1, P ((q, η, σ,Pmax)-well aligned | P0,D0, . . . ,Pk−1,Dk−1) ≥ q,
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Probabilistic properties for Dk

Deterministic descent
The set Dk is (κ, dmax)-descent for (f , xk) if

maxd∈Dk

−dTPk∇f (xk )
∥d∥∥Pk∇f (xk )∥ ≥ κ,

∀d ∈ Dk , d−1
max ≤ ∥d∥ ≤ dmax.

Ex) D⊕ = {e1, . . . , en,−e1, . . . ,−en} is ( 1√
n
, 1)-descent.

Probabilistic descent sets
{Dk} is (p, κ, dmax)-descent if:

P (D0 (κ, dmax)-descent | P0) ≥ p

∀k ≥ 1, P (Dk (κ, dmax)-descent | P0,D0, . . . ,Pk−1,Dk−1,Pk) ≥ p,
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Complexity analysis

Theorem (Roberts, R. ’23)

Assume:
{Dk} (p, κ, dmax)-descent, |Dk | = m;
{Pk} (q, η, σ,Pmax)-well aligned, pq > 1

2 .
Let Nϵ the number of function evaluations needed to have ∥∇f (xk)∥ ≤ ϵ.

P
(
Nϵ ≤ O

(
mϕϵ−2

2pq − 1

))
≥ 1 − exp

(
−O

(
2pq − 1

pq
ϕϵ−2

))
.

where ϕ = d8
maxκ

−2η−2σ−2P4
max.

How does this bound depend on n?
How can we choose Dk and Pk?
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Choosing directions (Dk) and subspaces (Pk)

Deterministic
Dk = [I n −I n] (m = 2n)
Pk = I n (no subspace).

(Random) Orthogonal

Dk = [I r −I r ] (m = 2r)
Pk ∈ Rr×n, PkPT

k = I r .
Known properties on Pk (Kozak et al ’21).

(Random) Gaussian

Dk = [I r −I r ] (m = 2r)
Pk ∈ Rr×n, [Pk ]i,j ∼ N (0, 1

r ).
Known guarantees on singular values of Pk (2010s).

(Random) Hashing

Dk = [I r −I r ] (m = 2r)
Pk ∈ {± 1√

s
, 0}r×n, s nonzero per columns.

New theory motivated by our work (Dzahini, Wild ’22)
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Analysis in a nutshell

Pk Evals/it Complexity
Identity O(n) O(n2)
Gaussian O(r) O(n)

Orthogonal O(r) O(n)
Hashing O(r) O(r2 n).

Conclusions
Can compute steps in r -dim. subspaces, r = O(1).
Effectively less evaluations per iteration.
Complexity: O(n2) ⇒ O(n)!
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Experiments in large dimensions

Benchmark:
Medium-scale test set (90 CUTEst problems of dimension ≈ 100);
Large-scale test set (28 CUTEst problems of dimension ≈ 1000).

Budget: 200(n + 1) evaluations.

Comparison:
Deterministic DS with Dk = [I n −I n] or Dk = [I n −1n];
Probabilistic direct search with 2 uniform directions;
Stochastic Three Point;
Probabilistic direct search with Gaussian/Hashing/Orthogonal Pk

matrices + r = 1.
Goal: Satisfy f (xk)− fopt ≤ 0.1(f (x0)− fopt).
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Comparison of all methods
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Left: Medium scale; Right: Large scale.

Challenging examples for (basic) direct search.
Random subspaces bring improvement!
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Gaussian matrices and subspace dimensions
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Numerically
Subspace dimension > 1 may improve performance...
...but in general opposite (Gaussian) directions work best!
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Towards more numerics...

The package
https://github.com/lindonroberts/directsearch

Python code + paper experiments.
pip install directsearch

Recent use at Meta:

Replaced CMA-ES in optimization wizard on smooth problems!
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Outline

1 Direct-search algorithm

2 Reduced subspace approach

3 Subspace dimensions
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Our findings

If you want to scale up...

Can compute steps in r -dim. subspaces, r = O(1);
Reduced evaluation cost per iteration;
Overall complexity: O(n2) ⇒ O(n)!

Numerically
Subspaces of dimension r > 1 may be good...
...but in general opposite Gaussian directions (r = 1) are better!
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Warren: “But why does this work?”

Why do 1-dim. subspaces give best performance?

Key result (Hare, Roberts, R. ’22)

Let g ∈ Sn−1, P ∈ Rr×n and D = [I r −I r ].
Then, the expected decrease ratio

E
[
mind∈D gTPTd

]
2r

is minimized at r = 1.

To decrease x 7→ gTx , r = 1 gives the best “bang for your buck”.
Using Taylor approximation

f (x + v)− f (x) ≈ ∇f (x)Tv ,

explains why this happens beyond linear functions.

C. W. Royer Random subspace DFO JFRO 2024 29



Warren: “But why does this work?”

Why do 1-dim. subspaces give best performance?

Key result (Hare, Roberts, R. ’22)

Let g ∈ Sn−1, P ∈ Rr×n and D = [I r −I r ].
Then, the expected decrease ratio

E
[
mind∈D gTPTd

]
2r

is minimized at r = 1.

To decrease x 7→ gTx , r = 1 gives the best “bang for your buck”.
Using Taylor approximation

f (x + v)− f (x) ≈ ∇f (x)Tv ,

explains why this happens beyond linear functions.

C. W. Royer Random subspace DFO JFRO 2024 29



Numerical validation

Setup
Monte-Carlo approximations of expected decrease.
Quadratic functions with a random linear term x 7→ gTx + L

2∥x∥
2.

Normalization by the number of function evaluations.
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Summary

Our results...
Probabilistic analysis/subspace viewpoint.
Improved complexity backed up by numerics.
Low dimension provably better on average.

...and beyond

Stochastic setting (Hot topic!).
Constraints (Ongoing work).
More numerics (Solvers/Applications).
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That’s it!

References
Direct search based on probabilistic descent in reduced spaces
L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
Expected decrease for derivative-free algorithms using random
subspaces
W. Hare, L. Roberts and C. W. Royer, Math. Comp., 94:277-304,
2025.
https://github.com/lindonroberts/directsearch

Merci!
clement.royer@lamsade.dauphine.fr

C. W. Royer Random subspace DFO JFRO 2024 32



That’s it!

References
Direct search based on probabilistic descent in reduced spaces
L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
Expected decrease for derivative-free algorithms using random
subspaces
W. Hare, L. Roberts and C. W. Royer, Math. Comp., 94:277-304,
2025.
https://github.com/lindonroberts/directsearch

Merci!
clement.royer@lamsade.dauphine.fr

C. W. Royer Random subspace DFO JFRO 2024 32


	Introduction
	Direct-search algorithm
	Deterministic direct search
	Going probabilistic

	Reduced subspace approach
	Complexity analysis
	Numerics with subspaces

	Subspace dimensions
	Conclusion

