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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Data at hand 1 :

locations of Police stations in Chicago

spatial locations of reported incidents of crime (with the
exception of murders) in Chicago in 2014

Questions (of interest ?) :

given the location of a crime, which Police station should
intervene ?

how updating the answer in an “online fashion” along the year ?

1. Open Data from Chicago : https://data.cityofchicago.org
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An example of a ressource allocation problem

Locations y1, . . . , yJ of Police stations in Chicago
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial location X1 of the first reported incident of crime in Chicago in
the year 2014
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An example of a ressource allocation problem

Spatial locations X1,X2 of reported incidents of crime in Chicago in
chronological order
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial locations X1,X2,X3 of reported incidents of crime in Chicago in
chronological order
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial locations X1, . . . ,X4 of reported incidents of crime in Chicago
in chronological order
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial locations X1, . . . ,X5 of reported incidents of crime in Chicago
in chronological order
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial locations of reported incidents of crime in Chicago in
chronological order (first 100)
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial locations of reported incidents of crime in Chicago in
chronological order (first 1000)
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Spatial locations X1, . . . ,XN of reported incidents of crime in Chicago
in chronological order (total N = 16104)
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Motivations from of a ressource allocation problem

An example of a ressource allocation problem

Heat map (kernel density estimation) of spatial locations of reported
incidents of crime in Chicago in 2014
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Wassertein optimal transport

Statistical approach to ressource allocation
Modeling assumptions :

spatial locations of reported incidents of crime : a sequence of iid
random variables

X1, . . . ,Xn

sampled from an unknown probability measure µ with support
X ⊂ R2

locations of Police station : a known and discrete probability
measure

ν =

J∑
j=1

νjδyj

where
yj ∈ R2 represent the spatial location of the j-th Police station
νj is a positive weight representing the “capacity” of each Police
station (we took νj = 1/J that is uniform weights)
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Wassertein optimal transport

Statistical approach to ressource allocation

Point of view in this talk : ressource allocation can be solved by
finding an optimal transportation map

T : X → {y1, . . . , yJ}

which pushes forward µ onto ν =
∑J

j=1 νjδyj (notation : T#µ = ν), with
respect to a given distance

c(x, y) = ‖x− y‖`p =

(
d∑

k=1

(xk − yk)
p

)1/p

, x, y ∈ Rd (here d = 2)

Question : how doing on-line estimation of such a map using the
observations X1, . . . ,Xn ∼iid µ?
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Wassertein optimal transport

Optimal transport between probability measures

Let T : X → {y1, . . . , yJ} such that T#µ = ν

Let Π(µ, ν) be the set of probability measures on X × X with
marginals µ and ν

Definition

The optimal transport problem between µ and ν is

W0(µ, ν) = min
T : T#µ=ν

∫
X

c(x,T(x))dµ(x), (Monge’s formulation)

or

W0(µ, ν) = min
π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y), (Kantorovich’s formulation)

where c(x, y) is the cost function of moving mass from x to y.
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Wassertein optimal transport

An example of semi-discrete optimal transport

Optimal transport of an absolutely continuous measure µ onto a
discrete measure ν (black dots)



Stochastic algorithm for optimal transport

Wassertein optimal transport

An example of semi-discrete optimal transport

Optimal transport of µ onto the discrete measure ν (black dots) -
Optimal map T for the Euclidean cost c(x, y) = ‖x− y‖`2
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Regularized optimal transport and stochastic optimisation

Optimal transport between probability measures

Problem : computational cost of optimal transport for data analysis 1

Case of discrete measures : if

µ =
K∑

i=1

µiδxi and ν =

K∑
j=1

νjδyj

then the cost to evaluate W0(µ, ν) (linear program) is generally

O(K3 log K)

1. See the recent book by Cuturi & Peyré (2018)
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Regularized optimal transport and stochastic optimisation

Regularized optimal transport

Definition (Cuturi (2013))

Let µ and ν be any probability measures supported on X . Then, the
regularized optimal transport problem between µ and ν is

Wε(µ, ν) = min
π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y) + εKL(π|µ⊗ ν),

where ε > 0 (regularization parameter) and

KL(π|ξ) =

∫
X×X

(
log
(dπ

dξ
(x, y)

)
− 1
)

dπ(x, y), with ξ = µ⊗ ν.

Case of discrete measures : for ε > 0
Sinkhorn algorithm (iterative scheme) to compute Wε(µ, ν)

computational cost of O(K2) at each iteration
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Regularized optimal transport and stochastic optimisation

Stochastic optimal transport

Proposition (Genevay, Cuturi, Peyré and Bach (2016))

Let µ be any probability measure and ν =
∑J

j=1 νjδyj . For ε ≥ 0, solve
the smooth concave maximization problem

Wε(µ, ν) = max
v∈RJ

E[hε(X, v)]︸ ︷︷ ︸
Stochastic optimization

where X is a random variable with distribution µ, and for x ∈ X and
v ∈ RJ,

hε(x, v) =
J∑

j=1

vjνj − ε log
( J∑

j=1

exp
(vj − c(x, yj)

ε

)
νj

)
− ε.
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Regularized optimal transport and stochastic optimisation

Stochastic algorithm 1

For fixed ε > 0, Robbins-Monro algorithm to compute a minimizer

v∗ ∈ arg min
v∈RJ

E[hε(X, v)]

Let X1, . . . ,Xn ∼iid µ, choose V0 ∈ RJ and a sequence γn+1 of steps
with

∑∞
n=1 γn = +∞ and

∑∞
n=1 γ

2
n < +∞ and do

V̂n+1 = V̂n + γn+1∇vhε(Xn+1, V̂n)

Easy computation of gradients for ε > 0 (smooth optimization)

∇vhε(x, v) = ν − π(x, v)

where π(x, v) ∈ RJ with

πj(x, v) =
( J∑

k=1

νk exp
(vk − c(x, yk)

ε

))−1
νj exp

(vj − c(x, yj)

ε

)
1. Genevay, Cuturi, Peyré and Bach (2016)



Stochastic algorithm for optimal transport

Regularized optimal transport and stochastic optimisation

Contribution in our work 1

Main goal : estimation of the Wasserstein functional Wε(µ, ν) based
on X1, . . . ,Xn ∼iid µ and assuming that ν is known

A simple recursive estimator :

Ŵn =
1
n

n∑
k=1

hε(Xk, V̂k−1).

Main results : asymptotic normality with a data-driven choice of the
learning rate

√
n
(

Ŵn −Wε(µ, ν)
) L−→ N (0, σ2

ε(µ, ν)
)

where the asymptotic variance σ2
ε(µ, ν) can also be estimated in a

recursive manner

σ̂ 2
n =

1
n

n∑
k=1

h2
ε(Xk, V̂k−1)− Ŵ 2

n .

1. Bercu, B. & Bigot, J. (2018) ArXiv :1812.09150
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Simulated data

Optimal transport of an absolutely continuous measure µ onto a
discrete measure ν (black dots)
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Simulated data

Samples X1, . . . ,XN ∼iid µ (with N = 20000) and discrete measure ν
(black dots)
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Simulated data

Convergence of the algorithm using the quadratic cost
c(x, y) = ‖x− y‖2

`2
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Simulated data

Optimal map T for the quadratic cost c(x, y) = ‖x− y‖2
`2

after
N = 20000 iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Spatial locations X1, . . . ,XN of reported incidents of crime in Chicago
in chronological order (total N = 16104)
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Convergence of the algorithm using the Euclidean cost
c(x, y) = ‖x− y‖`2
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T for the Euclidean cost c(x, y) = ‖x− y‖`2 after n = 100
iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T for the Euclidean cost c(x, y) = ‖x− y‖`2 after n = 1000
iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T for the Euclidean cost c(x, y) = ‖x− y‖`2 after n = 2000
iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T for the Euclidean cost c(x, y) = ‖x− y‖`2 after n = 3000
iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T for the Euclidean cost c(x, y) = ‖x− y‖`2 after
N = 16104 iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T for the `1 cost c(x, y) = ‖x− y‖`1 after N = 16104
iterations and ε = 0.005
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Regularized optimal transport and stochastic optimisation

Numerical experiments - Real data

Optimal map T : Euclidean versus `1 cost
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