Transport aléatoire et optimal de mesures pour l'allocation de ressources et partition d'une ville en districts

#### Jérémie Bigot

Institut de Mathématiques de Bordeaux Equipe Image, Optimisation et Probabilités (IOP)

Université de Bordeaux & Institut Universitaire de France

Joint work with Bernard Bercu (IMB, Bordeaux)

2ème Journée Aquitaine IA, RO et Data Science

Kedge Business School, Bordeaux, Février 2019

### 1 Motivations from of a ressource allocation problem

#### 2 Wassertein optimal transport

### 3 Regularized optimal transport and stochastic optimisation

## An example of a ressource allocation problem

#### Data at hand <sup>1</sup>:

- Iocations of Police stations in Chicago
- spatial locations of reported incidents of crime (with the exception of murders) in Chicago in 2014

#### Questions (of interest ?) :

- given the location of a crime, which Police station should intervene?
- how updating the answer in an "online fashion" along the year?

<sup>1.</sup> Open Data from Chicago: https://data.cityofchicago.org

## An example of a ressource allocation problem

Locations  $y_1, \ldots, y_J$  of Police stations in Chicago



## An example of a ressource allocation problem

Spatial location  $X_1$  of the **first** reported incident of crime in Chicago in the year 2014



## An example of a ressource allocation problem

Spatial locations  $X_1, X_2$  of reported incidents of crime in Chicago in **chronological order** 



## An example of a ressource allocation problem

Spatial locations  $X_1, X_2, X_3$  of reported incidents of crime in Chicago in **chronological order** 



## An example of a ressource allocation problem

Spatial locations  $X_1, \ldots, X_4$  of reported incidents of crime in Chicago in **chronological order** 



## An example of a ressource allocation problem

Spatial locations  $X_1, \ldots, X_5$  of reported incidents of crime in Chicago in **chronological order** 



## An example of a ressource allocation problem

#### Spatial locations of reported incidents of crime in Chicago in chronological order (first 100)



## An example of a ressource allocation problem

#### Spatial locations of reported incidents of crime in Chicago in chronological order (first 1000)



## An example of a ressource allocation problem

Spatial locations  $X_1, ..., X_N$  of reported incidents of crime in Chicago in **chronological order** (total N = 16104)



## An example of a ressource allocation problem

Heat map (kernel density estimation) of spatial locations of reported incidents of crime in Chicago in 2014



### 2 Wassertein optimal transport

#### 3 Regularized optimal transport and stochastic optimisation

#### - Wassertein optimal transport

## Statistical approach to ressource allocation

#### Modeling assumptions :

spatial locations of reported incidents of crime : a sequence of iid random variables

 $X_1,\ldots,X_n$ 

sampled from an  $\mathbf{unknown}$  probability measure  $\mu$  with support  $\mathcal{X} \subset \mathbb{R}^2$ 

Iocations of Police station : a known and discrete probability measure

$$\nu = \sum_{j=1}^{J} \nu_j \delta_{y_j}$$

where

y<sub>j</sub> ∈ ℝ<sup>2</sup> represent the spatial location of the *j*-th Police station
 ν<sub>j</sub> is a positive weight representing the "capacity" of each Police station (we took ν<sub>j</sub> = 1/J that is uniform weights)

#### - Wassertein optimal transport

## Statistical approach to ressource allocation

**Point of view in this talk :** ressource allocation can be solved by finding an optimal transportation map

$$T: \mathcal{X} \to \{y_1, \ldots, y_J\}$$

which pushes forward  $\mu$  onto  $\nu = \sum_{j=1}^{J} \nu_j \delta_{y_j}$  (notation :  $T \# \mu = \nu$ ), with respect to a given distance

$$c(x,y) = \|x-y\|_{\ell_p} = \left(\sum_{k=1}^d (x_k - y_k)^p\right)^{1/p}, \quad x,y \in \mathbb{R}^d \text{ (here } d = 2\text{)}$$

**Question :** how doing on-line estimation of such a map using the observations  $X_1, \ldots, X_n \sim_{iid} \mu$ ?

## Optimal transport between probability measures

• Let  $T: \mathcal{X} \to \{y_1, \dots, y_J\}$  such that  $T \# \mu = \nu$ 

Let  $\Pi(\mu, \nu)$  be the set of probability measures on  $\mathcal{X} \times \mathcal{X}$  with marginals  $\mu$  and  $\nu$ 

#### Definition

The optimal transport problem between  $\mu$  and  $\nu$  is

$$W_0(\mu,
u) = \min_{T \ : \ T \# \mu = 
u} \int_{\mathcal{X}} c(x,T(x)) d\mu(x),$$
 (Monge's formulation)

or

$$W_0(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) d\pi(x, y),$$
 (Kantorovich's formulation)

where c(x, y) is the cost function of moving mass from x to y.

Wassertein optimal transport

## An example of semi-discrete optimal transport

Optimal transport of an absolutely continuous measure  $\mu$  onto a discrete measure  $\nu$  (black dots)



Wassertein optimal transport

## An example of semi-discrete optimal transport

Optimal transport of  $\mu$  onto the discrete measure  $\nu$  (black dots) -Optimal map *T* for the Euclidean cost  $c(x, y) = ||x - y||_{\ell_2}$ 



### 1 Motivations from of a ressource allocation problem

#### 2 Wassertein optimal transport

### 3 Regularized optimal transport and stochastic optimisation

## Optimal transport between probability measures

Problem : computational cost of optimal transport for data analysis<sup>1</sup>

Case of discrete measures : if

$$\mu = \sum_{i=1}^{K} \mu_i \delta_{x_i}$$
 and  $\nu = \sum_{j=1}^{K} \nu_j \delta_{y_j}$ 

then the cost to evaluate  $W_0(\mu, \nu)$  (linear program) is generally

 $\mathcal{O}(K^3\log K)$ 

<sup>1.</sup> See the recent book by Cuturi & Peyré (2018)

## Regularized optimal transport

#### Definition (Cuturi (2013))

Let  $\mu$  and  $\nu$  be any probability measures supported on  $\mathcal{X}$ . Then, the regularized optimal transport problem between  $\mu$  and  $\nu$  is

$$W_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{X}} c(x,y) d\pi(x,y) + \varepsilon KL(\pi | \mu \otimes \nu),$$

where  $\epsilon > 0$  (regularization parameter) and

$$KL(\pi|\xi) = \int_{\mathcal{X}\times\mathcal{X}} \left( \log\left(\frac{d\pi}{d\xi}(x,y)\right) - 1 \right) d\pi(x,y), \text{ with } \xi = \mu \otimes \nu.$$

#### **Case of discrete measures :** for $\epsilon > 0$

- Sinkhorn algorithm (iterative scheme) to compute  $W_{\varepsilon}(\mu,\nu)$
- computational cost of  $\mathcal{O}(K^2)$  at each iteration

## Stochastic optimal transport

#### Proposition (Genevay, Cuturi, Peyré and Bach (2016))

Let  $\mu$  be any probability measure and  $\nu = \sum_{j=1}^{J} \nu_j \delta_{y_j}$ . For  $\varepsilon \ge 0$ , solve the smooth concave maximization problem

$$W_{arepsilon}(\mu,
u) = \max_{v \in \mathbb{R}^{d}} \underbrace{\mathbb{E}[h_{arepsilon}(X,v)]}_{Stochastic \ optimization}$$

where *X* is a random variable with distribution  $\mu$ , and for  $x \in \mathcal{X}$  and  $v \in \mathbb{R}^{J}$ ,

$$h_{\varepsilon}(x,v) = \sum_{j=1}^{J} v_j \nu_j - \varepsilon \log \left( \sum_{j=1}^{J} \exp \left( \frac{v_j - c(x,y_j)}{\varepsilon} \right) \nu_j \right) - \varepsilon.$$

## Stochastic algorithm<sup>1</sup>

For fixed  $\epsilon > 0$ , Robbins-Monro algorithm to compute a minimizer

$$v^* \in \operatorname*{arg\,min}_{v \in \mathbb{R}^J} \mathbb{E}[h_{\varepsilon}(X, v)]$$

Let  $X_1, \ldots, X_n \sim_{iid} \mu$ , choose  $V_0 \in \mathbb{R}^J$  and a sequence  $\gamma_{n+1}$  of steps with  $\sum_{n=1}^{\infty} \gamma_n = +\infty$  and  $\sum_{n=1}^{\infty} \gamma_n^2 < +\infty$  and do

$$\widehat{V}_{n+1} = \widehat{V}_n + \gamma_{n+1} \nabla_{v} h_{\varepsilon}(X_{n+1}, \widehat{V}_n)$$

**Easy computation of gradients for**  $\epsilon > 0$  (smooth optimization)

$$\nabla_{\nu}h_{\varepsilon}(x,\nu)=\nu-\pi(x,\nu)$$

where  $\pi(x, v) \in \mathbb{R}^J$  with

$$\pi_j(x,\nu) = \left(\sum_{k=1}^J \nu_k \exp\left(\frac{\nu_k - c(x,y_k)}{\varepsilon}\right)\right)^{-1} \nu_j \exp\left(\frac{\nu_j - c(x,y_j)}{\varepsilon}\right)$$

1. Genevay, Cuturi, Peyré and Bach (2016)

## Contribution in our work<sup>1</sup>

**Main goal :** estimation of the Wasserstein functional  $W_{\varepsilon}(\mu, \nu)$  based on  $X_1, \ldots, X_n \sim_{iid} \mu$  and assuming that  $\nu$  is known

A simple recursive estimator :

$$\widehat{W}_n = \frac{1}{n} \sum_{k=1}^n h_{\varepsilon}(X_k, \widehat{V}_{k-1}).$$

**Main results :** asymptotic normality with a data-driven choice of the learning rate

$$\sqrt{n} \Big( \widehat{W}_n - W_{\varepsilon}(\mu, \nu) \Big) \xrightarrow{\mathcal{L}} \mathcal{N} \big( 0, \sigma_{\varepsilon}^2(\mu, \nu) \big)$$

where the asymptotic variance  $\sigma_{\varepsilon}^2(\mu,\nu)$  can also be estimated in a recursive manner

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n h_{\varepsilon}^2(X_k, \widehat{V}_{k-1}) - \widehat{W}_n^2.$$

1. Bercu, B. & Bigot, J. (2018) ArXiv :1812.09150

## Numerical experiments - Simulated data

## Optimal transport of an absolutely continuous measure $\mu$ onto a discrete measure $\nu$ (black dots)



## Numerical experiments - Simulated data

Samples  $X_1, \ldots, X_N \sim_{iid} \mu$  (with N = 20000) and discrete measure  $\nu$  (black dots)



## Numerical experiments - Simulated data

# Convergence of the algorithm using the quadratic cost $c(x,y) = \|x-y\|_{\ell_2}^2$



## Numerical experiments - Simulated data

Optimal map *T* for the quadratic cost  $c(x, y) = ||x - y||_{\ell_2}^2$  after N = 20000 iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

Spatial locations  $X_1, ..., X_N$  of reported incidents of crime in Chicago in **chronological order** (total N = 16104)



## Numerical experiments - Real data

# Convergence of the algorithm using the Euclidean cost $c(x,y) = \|x-y\|_{\ell_2}$



## Numerical experiments - Real data

Optimal map *T* for the Euclidean cost  $c(x, y) = ||x - y||_{\ell_2}$  after n = 100 iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

Optimal map *T* for the Euclidean cost  $c(x, y) = ||x - y||_{\ell_2}$  after n = 1000 iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

Optimal map *T* for the Euclidean cost  $c(x, y) = ||x - y||_{\ell_2}$  after n = 2000 iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

Optimal map *T* for the Euclidean cost  $c(x, y) = ||x - y||_{\ell_2}$  after n = 3000 iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

Optimal map *T* for the Euclidean cost  $c(x, y) = ||x - y||_{\ell_2}$  after N = 16104 iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

Optimal map *T* for the  $\ell_1 \cot c(x, y) = ||x - y||_{\ell_1}$  after N = 16104iterations and  $\varepsilon = 0.005$ 



## Numerical experiments - Real data

#### Optimal map T: Euclidean versus $\ell_1$ cost

